Welcome to this guide on LiDAR-based 3D Object Detection using the OpenPCDet codebase. In this tutorial, we will explore the OpenPCDet framework in detail and demonstrate how to implement an object detection algorithm across three different levels.
1) Install the Open3D (faster) or mayavi visualization tools
pip install open3d
# or
pip install mayavi
In our case we have installed open3d
2) Download the pre-trained model provided by OpenPCDet
https://github.com/open-mmlab/OpenPCDet/tree/master#model-zoo
I downloaded model-50M for PV-RCNN as 'pv_rcnn_8369.pth' from KITTI 3D Object Detection Baselines
3) go to tools
cd tools
3) Run the demo based on pretrained weights
python demo.py --cfg_file /home/./OpenPCDet/tools/cfgs/kitti_models/pv_rcnn.yaml --ckpt /home/./OpenPCDet/./pv_rcnn_8369.pth --data_path /home/./OpenPCDet/000110.bin
Error 1
File "/home/./OpenPCDet/pcdet/datasets/argo2/argo2_dataset.py", line 7, in <module>
from av2.utils.io import read_feather
ModuleNotFoundError: No module named 'av2'
Solution
pip install av2
Error 2
File "/home/./OpenPCDet/pcdet/datasets/argo2/argo2_utils/so3.py", line 3, in <module>
import kornia.geometry.conversions as C
ModuleNotFoundError: No module named 'kornia'
Solution
pip install kornia
It will install kornia 0.7.4
When I run demo get another error
Error 3
Solution
Downgrade the kornia version and install kornia 0.5.8
Now when we run the demo
we can see the results
File: 000009.bin
Results for File: 000008.bin
Results for File: 000110.bin
Yongin-si, South Korea
sumairamanzoorpk@gmail.com